Recognizing Implicit Discourse Relations through Abductive Reasoning with Large-scale Lexical Knowledge
نویسندگان
چکیده
Discourse relation recognition is the task of identifying the semantic relationships between textual units. Conventional approaches to discourse relation recognition exploit surface information and syntactic information as machine learning features. However, the performance of these models is severely limited for implicit discourse relation recognition. In this paper, we propose an abductive theorem proving (ATP) approach for implicit discourse relation recognition. The contribution of this paper is that we give a detailed discussion of an ATP-based discourse relation recognition model with open-domain web texts.
منابع مشابه
Abductive Reasoning with a Large Knowledge Base for Discourse Processing
This paper presents a discourse processing framework based on weighted abduction. We elaborate on ideas described in Hobbs et al. (1993) and implement the abductive inference procedure in a system called Mini-TACITUS. Particular attention is paid to constructing a large and reliable knowledge base for supporting inferences. For this purpose we exploit such lexical-semantic resources as WordNet ...
متن کاملRecognition of Higher-Order Relations among Features in Textual Cases Using Random Indexing
We envisage retrieval in textual case-based reasoning (TCBR) as an instance of abductive reasoning. The two main subtasks underlying abductive reasoning are ‘hypotheses generation’ where plausible case hypotheses are generated, and ‘hypothesis testing’ where the best hypothesis is selected among these in sequel. The central idea behind the presented two-stage retrieval model for TCBR is that re...
متن کاملAbductive reasoning for image interpretation based on spatial concrete domains and description logics
Image interpretation aims not only at detecting and recognizing objects in a scene but also at deriving a semantic description considering contextual information in the whole scene. Image interpretation can be formalized as an abductive reasoning problem, i.e. an inference to the best explanation using a background knowledge. In this work, we present a framework using a tableau method for gener...
متن کاملRecognizing Implicit Discourse Relations in the Penn Discourse Treebank
We present an implicit discourse relation classifier in the Penn Discourse Treebank (PDTB). Our classifier considers the context of the two arguments, word pair information, as well as the arguments’ internal constituent and dependency parses. Our results on the PDTB yields a significant 14.1% improvement over the baseline. In our error analysis, we discuss four challenges in recognizing implic...
متن کاملAutomatic sense prediction for implicit discourse relations in text
We present a series of experiments on automatically identifying the sense of implicit discourse relations, i.e. relations that are not marked with a discourse connective such as “but” or “because”. We work with a corpus of implicit relations present in newspaper text and report results on a test set that is representative of the naturally occurring distribution of senses. We use several linguis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013